Articles, videos about Black Ginger
Kaempferia parviflora and Its Methoxyflavones: Chemistry and Biological Activities
Chen, Dalin; Li, Hongliang; Li, Wen; Feng, Shuo; Deng, Dingsen
https://doi.org/10.1155/2018/4057456
Abstract
Kaempferia parviflora (KP), a health-promoting herb, has been traditionally used for treating a variety of diseases. Pharmacological studies have claimed the various benefits from KP and its main effective methoxyflavones, including cellular metabolism-regulating activity, anticancer activity, vascular relaxation and cardioprotective activity, sexual enhancing activity, neuroprotective activity, antiallergic, anti-inflammatory, and antioxidative activity, antiosteoarthritis activity, antimicroorganism activity, and transdermal permeable activity. These might be associated with increased mitochondrial functions and activated cGMP-NO signaling pathway. However, the underlying molecular mechanisms of KP and its methoxyflavones are still under investigation. The clinical applications of KP and its methoxyflavones may be limited due to their low bioavailability. But promising strategies are on the way. This review will comprehensively discuss the biological activities of KP and its methoxyflavones.
References:
Saokaew S., Wilairat P., Raktanyakan P., Dilokthornsakul P., Dhippayom T., Kongkaew C., Sruamsiri R., Chuthaputti A., and Chaiyakunapruk N., Clinical Effects of Krachaidum (Kaempferia parviflora): A Systematic Review, Evidence-Based Complementary and Alternative Medicine. (2017) 22, no. 3, 413–428, 2-s2.0-85020211698, https://doi.org/10.1177/2156587216669628.
Toda K., Hitoe S., Takeda S., and Shimoda H., Black ginger extract increases physical fitness performance and muscular endurance by improving inflammation and energy metabolism, Heliyon. (2016) 2, no. 5, 2-s2.0-84981358142, https://doi.org/10.1016/j.heliyon.2016.e00115, e00115.
Azuma T., Tanaka Y., and Kikuzaki H., Phenolic glycosides from Kaempferia parviflora, Phytochemistry. (2008) 69, no. 15, 2743–2748, https://doi.org/10.1016/j.phytochem.2008.09.001.
Okabe Y., Shimada T., Horikawa T., Kinoshita K., Koyama K., Ichinose K., Aburada M., and Takahashi K., Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora, Phytomedicine. (2014) 21, no. 6, 800–806, 2-s2.0-84901237854, https://doi.org/10.1016/j.phymed.2014.01.014.
Tewtrakul S., Subhadhirasakul S., and Kummee S., Anti-allergic activity of compounds from Kaempferia parviflora, Journal of Ethnopharmacology. (2008) 116, no. 1, 191–193, 2-s2.0-38649118522, https://doi.org/10.1016/j.jep.2007.10.042, 18077118.
Sawasdee P., Sabphon C., Sitthiwongwanit D., and Kokpol U., Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora, Phytotherapy Research. (2009) 23, no. 12, 1792–1794, 2-s2.0-73449085846, https://doi.org/10.1002/ptr.2858, 19548291.
Temkitthawon P., Hinds T. R., Beavo J. A., Viyoch J., Suwanborirux K., Pongamornkul W., Sawasdee P., and Ingkaninan K., Kaempferia parviflora, a plant used in traditional medicine to enhance sexual performance contains large amounts of low affinity PDE5 inhibitors, Journal of Ethnopharmacology. (2011) 137, no. 3, 1437–1441, 2-s2.0-80054878081, https://doi.org/10.1016/j.jep.2011.08.025.
Ninomiya K., Matsumoto T., Chaipech S., Miyake S., Katsuyama Y., Tsuboyama A., Pongpiriyadacha Y., Hayakawa T., Muraoka O., and Morikawa T., Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora, Journal of Natural Medicines. (2016) 70, no. 2, 179–189, 2-s2.0-84958109865, https://doi.org/10.1007/s11418-015-0955-z.
Sutthanut K., Sripanidkulchai B., Yenjai C., and Jay M., Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography, Journal of Chromatography A. (2007) 1143, no. 1-2, 227–233, https://doi.org/10.1016/j.chroma.2007.01.033, 2-s2.0-33846838915.
Mekjaruskul C., Jay M., and Sripanidkulchai B., Modulatory effects of Kaempferia parviflora extract on mouse hepatic cytochrome P450 enzymes, Journal of Ethnopharmacology. (2012) 141, no. 3, 831–839, 2-s2.0-84861335850, https://doi.org/10.1016/j.jep.2012.03.023, 22465145.
Kim M., Kim N., and Han J., Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1, Journal of Agricultural and Food Chemistry. (2014) 62, no. 51, 12377–12383, 2-s2.0-84919779924, https://doi.org/10.1021/jf504074n, 25437273.
Wei G.-J., Hwang L. S., and Tsai C.-L., Absolute bioavailability, pharmacokinetics and excretion of 5,7,3',4'-tetramethoxyflavone in rats, Journal of Functional Foods. (2014) 7, no. 1, 136–141, 2-s2.0-84898025878, https://doi.org/10.1016/j.jff.2013.10.006.
Lu W.-C., Sheen J.-F., Hwang L. S., and Wei G.-J., Identification of 5,7,3',4'-tetramethoxyflavone metabolites in rat urine by the isotope-labeling method and ultrahigh-performance liquid chromatography-electrospray ionization-mass spectrometry, Journal of Agricultural and Food Chemistry. (2012) 60, no. 33, 8123–8128, 2-s2.0-84865431301, https://doi.org/10.1021/jf302043a, 22812915.
Zhang M., Pan D. R., and Zhou F., BP neural network extraction process by orthogonal beautiful azalea flavonoids, Journal of Xinyang Normal University. (2011) 2, 261–264.
Chivapat S., Chavalittumrong P., Attawish A., and Rungsipipat A., Chronic toxicity study of Kaempferia parviflora wall ex. Extract, Thai Journal of Veterinary Medicine. (2010) 40, no. 4, 377–383, 2-s2.0-79251490094.
Sudwan P., Saenphet K., Saenphet S., and Suwansirikul S., Effect of Kaempferia parviflora Wall. ex. Baker on sexual activity of male rats and its toxicity., The Southeast Asian Journal of Tropical Medicine and Public Health. (2006) 37, 210–215, 2-s2.0-34447517436, 17547083.
Jacob J., Amalraj A., Divya C., Janadri S., Manjunatha P., and Gopi S., Oral toxicity study of sports nutritional powder in Wistar rats: A 90 day repeated dose study, Toxicology Reports. (2018) 5, 497–503, https://doi.org/10.1016/j.toxrep.2018.04.001https://doi.org/10.1016/j.toxrep.2018.04.001.
Yoshino S., Kim M., Awa R., Kuwahara H., Kano Y., and Kawada T., Kaempferia parviflora extract increases energy consumption through activation of BAT in mice, Food Science & Nutrition. (2014) 2, no. 6, 634–637, 2-s2.0-84929758314, https://doi.org/10.1002/fsn3.144.
Akase T., Shimada T., Terabayashi S., Ikeya Y., Sanada H., and Aburada M., Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice, Journal of Natural Medicines. (2011) 65, no. 1, 73–80, 2-s2.0-78651381619, https://doi.org/10.1007/s11418-010-0461-2, 20814753.
Horikawa T., Shimada T., Okabe Y., Kinoshita K., Koyama K., Miyamoto K.-I., Ichinose K., Takahashi K., and Aburada M., Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation, Biological & Pharmaceutical Bulletin. (2012) 35, no. 5, 686–692, 2-s2.0-84861215767, https://doi.org/10.1248/bpb.35.686, 22687402.