Articles, videos about Black Ginger
Effect of Kaempferia parviflora extract on knee osteoarthritis
Kobayashi, Hiroko; Suzuki, Ryo; Sato, Kei; Ogami, Takatoshi; Tomozawa, Hiroshi Tsubata, Masahito; Ichinose, Koji; Aburada, Masaki; Ochiai, Wataru; Sugiyama, Kiyoshi; Shimada, Tsutomu
Abstract
Knee osteoarthritis (OA) is becoming more prevalent worldwide due to increases in the numbers of elderly and obese patients. Currently, pharmaceutical medicines used for the treatment of OA are for symptomatic therapy and therefore new therapeutic agents are needed. Kaempferia parviflora (KP) is a plant growing naturally in Southeast Asia and has various pharmacological effects including an anti-inflammatory effect, but no effect on OA has yet been reported. We therefore conducted a search for the effects KP and the active components of KP extract (KPE) exert on OA as well as its mechanism of action. Results from a study of KPE using the monoiodoacetic acid rat OA model revealed that KPE reduced the pain threshold and severity of osteoarthritic cartilage lesions. The mechanism of action and active components were then investigated using IL-1ß-treated human knee-derived chondrocytes. KPE, as well as 5,7-dimethoxyflavone and 5,7,4'-trimethoxyflavone, which are key constituents of KPE and highly absorbable into the body, reduced the expression of matrix metalloproteinases (MMPs), which are the main extracellular matrix enzymes that degrade collagen within cartilage. As mentioned above, KPE acted to suppress OA and 5,7-dimethoxyflavone and 5,7,4'-trimethoxyflavone were shown to be involved as part of KPE’s mechanism that inhibits MMPs.
In regards to the active constituents for anti-allergic activity of Kaempferia parviflora, 5-hydroxy-3,7,3',4'-tetramethoxyflavone (5), 5-hydroxy-7-methoxyflavone (2) and 5-hydroxy-7,4'-dimethoxyflavone (4) are responsible for anti-allergic effect of this plant. The findings support the traditional use of Kaempferia parviflora rhizomes for treatment of allergy and allergy-related diseases.
References:
Okada Y (2000) Matrix-degrading metalloproteinases and their roles in joint destruction. Mod Rheumatol 10:121–128. doi:10.3109/s101650070018
Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M (2011) Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 63:73–80
Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, Ichinose K, Takahashi K, Aburada M (2011) Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 82:1272–1278
Kobayashi H, Horiguchi-Babamoto E, Suzuki M, Makihara H, Tomozawa H, Tsubata M, Shimada T, Sugiyama K, Aburada M (2016) Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med 70:54–61. doi:10.1007/s11418-015-0936-2
Matsushita M, Yoneshiro T, Aita S, Kamiya T, Kusaba N, Yamaguchi K, Takagaki K, Kameya T, Sugie H, Saito M (2015) Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue. J Nutr Sci Vitaminol (Tokyo) 61:79–83. doi:10.3177/jnsv.61.79
Hidaka M, Horikawa K, Akase T, Makihara H, Ogami T, Tomozawa H, Tsubata M, Ibuki A, Matsumoto Y (2017) Efficacy of Kaempferia parviflora in a mouse model of obesity-induced dermatopathy. J Nat Med 71:59–67. doi:10.1007/s11418-016-1027-8
Tewtrakul S, Subhadhirasakul S (2008) Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. J Ethnopharmacol 120:81–84. doi:10.1016/j.jep.2008.07.033
Sae-wong C, Tansakul P, Tewtrakul S (2009) Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 124:576–580. doi:10.1016/j.jep.2009.04.059
Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, Yoshikawa M (2011) Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 136:488–495. doi:10.1016/j.jep.2011.01.013
Horigome S, Yoshida I, Tsuda A, Harada T, Yamaguchi A, Yamazaki K, Inohana S, Isagawa S, Kibune N, Satoyama T, Katsuda S, Suzuki S, Watai M, Hirose N, Mitsue T, Shirakawa H, Komai M (2014) Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci Biotechnol Biochem 78:851–860. doi:10.1080/09168451.2014.905177
Park JE, Pyun HB, Woo SW, Jeong JH, Hwang JK (2014) The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice. Photodermatol Photoimmunol Photomed 30:237–245. doi:10.1111/phpp.12097
Tewtrakul S, Subhadhirasakul S, Kummee S (2008) Anti-allergic activity of compounds from Kaempferia parviflora. J Ethnopharmacol 116:191–193
Welbat JU, Chaisawang P, Chaijaroonkhanarak W, Prachaney P, Pannangrong W, Sripanidkulchai B, Wigmore P (2016) Kaempferia parviflora extract ameliorates the cognitive impairments and the reduction in cell proliferation induced by valproic acid treatment in rats. Ann Anat 206:7–13. doi:10.1016/j.aanat.2016.04.029
Wattanathorn J, Muchimapura S, Tong-Un T, Saenghong N, Thukhum-Mee W, Sripanidkulchai B (2012) Positive modulation effect of 8-week consumption of Kaempferia parviflora on health-related physical fitness and oxidative status in healthy elderly volunteers. Evid Based Complement Alternat Med 2012:732816. doi:10.1155/2012/732816
Promthep K, Eungpinichpong W, Sripanidkulchai B, Chatchawan U (2015) Effect of Kaempferia parviflora extract on physical fitness of soccer players: a randomized double-blind placebo-controlled trial. Med Sci Monit Basic Res 21:100–108. doi:10.12659/MSMBR.894301